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Abstract
This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate
carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential ex-
pression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using
exon-level expressionmicroarrays, followed by in vitro validation using cell linemodels.We found specific deregulation
of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in
both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A,
CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10
and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively,
te tissue; PCA, principal components analysis; PCa, prostate carcinoma; qMSP, quan-
tion; shRNA, short hairpin RNA; siRNA, small interfering RNA; TSA, Trichostatin A
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whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was
significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the
topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methyla-
tion levels of a CpG island found at −66 bp of the transcription start site in PCa and that TDRD1 expression
is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors
regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and
can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

Neoplasia (2012) 14, 600–611
Introduction
Genomic rearrangements involving five members of the ETS family
of transcription factors have been found in prostate carcinomas
(PCa). Rearrangements of ERG and ETV1 were first described by
Tomlins et al. [1] and are found in approximately 50% and 5% to
10% of PCa, respectively [2,3]. Rearrangements of ETV4 and ETV5
were later identified in a small proportion of PCa, representing less
than 5% of all rearranged cases [4–7]. Recently, we identified FLI1 as
the fifth member of the ETS family of transcription factors involved
in gene fusions in PCa, being fused to the SLC45A3 gene [8].
The products of specific chimeric genes could be ideal therapy

targets, but the nuclear localization of the aberrant ETS proteins
makes them a difficult therapy target in vivo [9]. Therefore, it is
important to characterize in detail the downstream molecular targets
of each of the aberrant transcription factors, not only to understand
the deregulated signaling pathways but also because some of them
may turn out to be more amenable to targeted therapy. In vitro stud-
ies revealed that ERG activates plasminogen and Wnt pathways to
promote degradation of the extracellular matrix and decrease cell
adhesion, but very few genes have been validated as direct ERG
targets [10–12]. Because ETV1 rearrangements are considerably less
frequent than those of ERG, reports focusing on the oncogenic effec-
tors of ETV1 overexpression are scarce and not based in the expres-
sion profile observed in ETV1 rearrangement-positive tumors, with
some in vitro and in vivo models linking overexpression of ETV1
with the invasion potential of cancer cells by activation of matrix
metalloproteinases and integrins [13–15].
Despite the apparently overlapping oncogenic potential of ERG

and ETV1 gene fusions, it has not been established whether different
ETS transcription factors have shared or specific downstream targets.
We addressed this issue by using exon-level expression arrays in a
series of 50 PCa enriched for different ETS rearrangements and
validated the findings using in vitro cell line models.
Materials and Methods

Prostate Tissue Samples
We used a series of 50 tumor samples selected from a consecutive

series of 200 clinically localized PCa that were previously typed for
ETS rearrangements [8]. The 50 prostatectomy samples were selected
to represent the various molecular subtypes of PCa, namely 21 samples
with ERG rearrangement, 13 samples with ETV1 rearrangement,
2 samples with other ETS rearrangements (one with ETV4 and one
with ETV5 rearrangements), and 14 samples without known ETS
rearrangement. For control purposes, nine normal prostate tissues
(NPTs) were collected from cystoprostatectomy specimens of bladder
cancer patients. This study was approved by the institutional review
board, and informed consent was obtained from all subjects.
Prostate Cell Lines
VCaP and PNT2 cells were acquired from the European Collec-

tion of Cell Cultures (Sigma-Aldrich, St Louis, MO). LNCaP, PC3,
and DU145 cells were acquired from the German Resource Centre
for Biological Material (DSMZ, Braunschweig, Germany). 22Rv1
cells were kindly provided by Dr David Sidransky from the Johns
Hopkins University School of Medicine. The virus packaging Retro-
Pack PT67 cell line was acquired from Clontech Laboratories, Inc
(Saint-Germain-en-Laye, France). All prostate cell lines were cultured
under the recommended conditions, being karyotyped by G banding
for validation purposes and tested for Mycoplasma spp. contamina-
tion (PCR Mycoplasma Detection Set; Clontech Laboratories). After
transfection, cells were grown in medium supplemented with G418
(300 μg/ml; GIBCO by Life Technologies, Carlsbad, CA) or puromycin
(5 μg/ml, Clontech Laboratories), as appropriate.
Gene Expression Microarrays
RNA was extracted from tissue samples using TRIzol (Invitrogen

by Life Technologies, Carlsbad, CA), as previously described [8], and
1 μg of RNA was processed into complementary DNA (cDNA) and
hybridized to GeneChip Human Exon 1.0 ST arrays, following the
manufacturer’s recommendations. The Affymetrix Expression Console
v1.1 software was used to obtain gene-level RMA-normalized expres-
sion values for the core probe sets only. We used analysis of variance
in Partek Genomics Suite 6.4 (Partek, Inc, St Louis, MO) to identify
differentially expressed genes among the different sample groups. The
two PCa with ETV4 and ETV5 rearrangements were not included in
this analysis. Specific ERG target genes were identified from genes
differentially expressed between each of the three group comparisons:
NPT versus ERG-positive PCa, ETS-negative PCa versus ERG-positive
PCa and ETV1-positive PCa versus ERG-positive PCa. To select specific
ETV1 target genes, the same approach was applied comparing NPT
versus ETV1-positive PCa, ETS-negative PCa versus ETV1-positive
PCa and ERG-positive PCa versus ETV1-positive PCa. Targets common
to ERG and ETV1 rearrangements were identified from the differen-
tially expressed genes in each of the four group comparisons: NPT versus
ERG-positive PCa, NPT versus ETV1-positive PCa, ETS-negative PCa
versus ERG-positive PCa and ETS-negative PCa versus ETV1-positive
PCa. Only differentially expressed genes with a false discovery rate less
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than 5% and P < .02 between each two-group comparison were re-
tained for further analyses. Principal components analysis (PCA) was
performed with Partek Genomics Suite 6.4 and hierarchical clustering
with MultiExperiment Viewer 4.6.0. Hierarchical clustering was per-
formed using Spearman rank correlation and average linkage optimized
for gene leaf order.
Transient Silencing of ERG Expression in VCaP Cells
To induce down-regulation of ERG expression in VCaP cells we used

small interfering RNAs (siRNAs) as described by others [12]. The
SMART-pool siRNA directed to ERG (M-003886-01; Dharmacon,
Thermo Fisher Scientific, Rockford, IL) and the siCONTROL Non-
Targeting RNA (D-001210-01; Dharmacon) were transfected into
VCaP cells using Oligofectamine (Invitrogen). After 48 and 72 hours,
RNA and protein extractions were performed using the TriplePrep Kit
(GEHealthcare, Cleveland, OH). Expression data of VCaP-siERG cells
were normalized to VCaP-siCont for each time point.
Generation of Plasmid Constructs for Stable Silencing and
De Novo Overexpression

To generate constructs for stable silencing of ETV1, specific short
hairpin RNA (shRNA) sequences were selected and designed using
the RNAi Target Sequence Selector and the shRNA Sequence De-
signer, respectively (both from Clontech Laboratories). shETV1-553
(5′-GATCCGCTCATACACCGAAACCTGATTCAAGA GAT-
CAGGTTTCGGTGTATGAGTTTTTTACGCGTG-3′) and
shETV1-1037 (5′-GATCCACAAGAGCCAGGAATGTATTTCAA-
GAGAATACATTCCTGGCTCTTGTTTTTTTACGCGTG-3′)
oligonucleotides were acquired from Sigma-Aldrich, annealed, and
cloned into the pSIREN-Retro-Q vector (Clontech Laboratories) at
BamHI and EcoRI restriction sites, together with the negative control
shNeg (Clontech Laboratories). To generate constructs for de novo
overexpression of ETV1 and ERG, full-length ETV1 CDS and trun-
cated ERG CDS (ΔERG and ΔERGΔ8) were amplified from LNCaP
and VCaP cells, respectively, using In-fusion primers (Table W1) and
the Phusion Taq DNA polymerase (Finnzymes, Vantaa, Finland).
Polymerase chain reaction (PCR) products were cloned into the
pMSCVneo vector (Clontech Laboratories) at BglII and EcoRI restric-
tion sites using the In-Fusion Advantage PCR cloning kit (Clontech
Laboratories), according to instructions. The pMSCVneo-ETV1 con-
struct contains the ETV1 full-length CDS (ENST00000242066), as
expected; the pMSCVneo-ΔERG contains the expected CDS derived
from the type III TMPRSS2-ERG transcript [16] and pMSCVneo-
ΔERGΔ8 contains the alternatively spliced transcript lacking 72 bp
(exon 8) [17,18].
Stable Silencing of ETV1 in LNCaP Cells
To silence the expression of ETV1 in LNCaP cells, PT67 cells

were transfected with each construct and also with the control vector
pSIREN-shNeg using the CaPO4-based transfection method, fol-
lowing Clontech’s recommendations (protocol no. PT3132-1, version
no. PR631543). Transfected cells were selected with puromycin and
expanded. LNCaP cells were exposed to viral medium for 8 hours and
allowed to recover for 24 hours in regular growth conditions. Stable
LNCaP-shETV1 and LNCaP-shNeg populations were obtained with
puromycin-selective pressure. Two independent, low ETV1 expression
clones (LNCaP-shETV1-C1 and LNCaP-shETV1-C2) were isolated
and used for further analyses.
Stable Overexpression of ETV1 and ΔERG Isoforms in
PNT2 Cells

For stable expression of the ETV1 and ΔERG isoforms described,
PT67 cells were transfected with pMSCV constructs and with the
empty vector pMSCVneo as previously described. Transfected cells were
selected with G418 and expanded. Transduction of PNT2 cells was
carried out as previously described for LNCaP cells. A control population
(PNT2-Neo) and two independent populations showing overexpres-
sion of either ETV1 (PNT2-ETV1-A and PNT2-ETV1-B) or ΔERG
isoforms (PNT2-ΔERG-A, PNT2-ΔERG-B, PNT2-ΔERGΔ8-A and
PNT2-ΔERGΔ8-B) were obtained with G418-selective pressure.

In Silico Selection of Target Genes for Further Validation
We used the expression data of VCaP, LNCaP, PC3, and DU145

cell lines available from Taylor et al. that can be accessed from the
Gene Expression Omnibus (GSE21034) to select the candidate target
genes where differential expression was specific of the cell line models
harboring ETS rearrangements, taking into consideration the candi-
date target genes resulting from the microarray analysis of the prostate
tumor samples. Using the RMA-normalized signal intensity values, ERG-
associated genes were selected as those differentially upregulated or down-
regulated at least 1.5-fold in VCaP cells comparing with the others.
Similarly, ETV1-associated genes were those differentially upregulated
or downregulated at least 1.5-fold in LNCaP cells comparing with the
others, and target genes shared by ERG and ETV1 rearrangements were
those differentially upregulated or downregulated at least 1.5-fold in
VCaP or LNCaP cells comparing with PC3 and DU145 cell lines.

Quantitative Real-time Polymerase Chain Reaction
RNA was extracted from subconfluent cell lines using the RNeasy

mini kit (Qiagen, GmbH,Hilden, Germany). cDNAwas obtained from
1 μg of RNA using oligo-dT primers and the H-minus RevertAid cDNA
synthesis kit (Fermentas, Ontario, Canada), according to the manufac-
turer’s instructions. Expression of target genes was quantified using pre-
developed TaqMan assays from Applied Biosystems (Life Technologies,
Foster City, CA) (Table W1) and normalized to the expression of the
GUSB housekeeping gene using the comparative C t method [19].

Western Blot Analysis
Protein was extracted from subconfluent cells using RIPA lysis buffer

in the presence of protease inhibitors (Santa Cruz Biotechnology, Inc,
Heidelberg, Germany), and concentration was determined by the BCA
protein assay (Thermo Fisher Scientific), following the manufacturer’s
recommendations. Specific detection of ERG and ETV1 was achieved
by incubation with rabbit anti-ERG (1:1000; Epitomics, Burlingame,
CA) and mouse anti-ETV1 (1:500; Sigma-Aldrich) monoclonal anti-
bodies, respectively. An anti–β-actin monoclonal antibody (1:8000;
Sigma-Aldrich) was used to control protein loading.

Bisulfite Treatment and Quantitative Methylation-Specific
PCR of TDRD1

Genomic DNA was extracted from prostate tissues and cell lines
using a standard technique comprising digestion with proteinase K
(20 mg/ml) in the presence of 10% SDS at 55°C, followed by phenol-
chloroform extraction and precipitation with 100% ethanol [20]. In 4
of the 50 PCa samples (1 ERG-positive, 1 ETV1-positive, and the 2
samples with other ETS rearrangements), it was not possible to obtain
DNA. One microgram of DNA was submitted to bisulfite modification



Figure 1. Workflow applied to 9 NPTs and 50 PCa previously characterized for the presence of known ETS rearrangements to identify
both specific and shared ERG and ETV1 target genes by differential expression analysis. The two PCa with other ETS rearrangements
were not included in Partek Genomics Suite analysis.

Neoplasia Vol. 14, No. 7, 2012 ETS Target Genes in Prostate Cancer Paulo et al. 603
using the EZ DNA Methylation Gold Kit (Zymo Research, Orange,
CA) following the manufacturer’s instructions. Bisulfite-modified
DNA was amplified by quantitative methylation-specific PCR (qMSP)
using TaqMan technology [21]. Specific TDRD1 primers and TaqMan
probe were designed using the Methyl Primer Express Software v1.0
(Applied Biosystems; Table W1). β-Actin (ACTB) was used as an inter-
nal reference gene to normalize for DNA input and qMSP reaction was
performed as previously described [22]. Methylation levels for each
sample were obtained from calibration curves constructed using serial
dilutions of bisulfite-modified CpGenome Universal Methylated DNA
(Millipore, Billerica, MA). TDRD1 methylation levels were obtained
after normalization to ACTB.

Bisulfite Sequencing
To obtain detailed information about the methylation status of

CpG sites in the CpG island found in the TDRD1 promoter, bisulfite-
sequencing PCR primers (Table W1) that span the region of interest
were tested in bisulfite-modified DNA from VCaP, LNCaP, PC3,
DU145, 22Rv1, and PNT2 cells. PCR was performed as previously
described [23].

Chromatin Immunoprecipitation and Quantitative PCR
Transcription factor–dependent gene expression is associated with

the recruitment of transcription factors to regulatory sequences. This
is detected commonly through the use of chromatin immunoprecipita-
tion and, where sites are known or predicted, through quantitative PCR
(qPCR) for the bound regions. We used VCaP cells and the rabbit
anti-ERG monoclonal antibody (Epitomics) to detect ERG binding
to the promoter of candidate target genes. For each immunoprecipita-
tion with the EZ-Magna chromatin immunoprecipitation (ChIP) G kit
(Millipore), 2 × 106 cells were used, following the manufacturer’s in-
structions [24,25]. We used two approaches to identify candidate sites
within the promoter regions. One approach was to mine the ChIP-Seq
data set available from Yu et al. [26] for ERG generated in the VCaP
cell line (GSE14092, sample GSM353647). Processed sequencing files
were uploaded into the UCSC genome browser and aligned to build
hg18. Gene proximal sites were then selected. In addition, we also used
in silico prediction by uploading promoter sequences into ConSite—
http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite/ [27]. Overall,
four promoter regions were analyzed for TDRD1 (−1207, −3196,
−7686, and −8768) and three for GRPR (−583, −1386, and −4858),
KCNH8 (−797, −1472, and −3506), and TMEM45B (−260, −2847,
and −5687). Primers were designed using the Primer3 online soft-
ware and acquired from Metabion (Martinsried, Germany). Prim-
ers for a negative control region were also included to correct for
unspecific binding (TableW1) [28]. qPCR was performed using Power
SYBR Green (Applied Biosystems), according to the manufacturer’s
recommendations. Results are shown as a fold enrichment of ERG
bound chromatin relative to IgG and corrected to the negative control
region [29].
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Figure 3. Validation of tumor-associated ERG target genes in cell line models. (A) Using siRNAs directed to ERG, a significant down-
regulation of ERG expression was achieved in VCaP cells, as evaluated both by qRT-PCR and by Western blot analyses at 48 and 72 hours
after transient transfection. (B) Of the eight tumor-associated ERG candidate target genes, seven were significantly deregulated after ERG
silencing, as evaluated by qRT-PCR. (C) De novo expression of two ΔERG isoforms was stably induced in the benign PNT2 prostate cells,
as shown both by qRT-PCR and Western blot analyses. (D) De novo expression of ΔERG isoforms was not sufficient to induce expression
of the tumor-associated ERG target genes in PNT2 cells. *P < .05. **P < .01. NS indicates not significant (P > .05).

Figure 2. PCA and hierarchical clustering of the expression profile obtained for normal controls (NPT) and PCa samples. (A and B) Sample
distribution obtained by PCA in Partek Genomics Suite using the full gene expression profile and the 99 gene panel obtained by differential
expression analysis, respectively. (C) Hierarchical clustering of the 9 NPT samples and the 50 PCa obtained with the RMA-normalized
expression data of the panel of 99 genes selected with Partek’s differential expression analysis. The nine NPTs are shown in black, the
ETS-negative PCa in gray, the ERG-positive PCa in red, the ETV1-positive PCa in dark purple, and the other ETS-positive PCa in light purple.
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Figure 4. Validation of tumor-associated ETV1 target genes in cell line models. (A) Using shRNAs directed to ETV1, a significant down-
regulation of ETV1 expression was achieved in LNCaP cells, as evaluated both by qRT-PCR and by Western blot analyses. (B) FKBP10
andGLYATL2, two tumor-associated ETV1 candidate target genes,were shown to be significantly decreased after ETV1 silencing. (C)Denovo
expression of ETV1 was stably induced in the benign PNT2 prostate cells, as shown by qRT-PCR and Western blot analyses. (D) De novo
expression of ETV1 induced significant up-regulation of FKBP10 expression in the PNT2-ETV1-B cells, which show higher expression of
ETV1. (E) Box plot distribution of the expression of FKBP10 among the different sample groups shows a significant up-regulation of FKBP10
in ETV1-positive PCa comparing with other PCa and with NPT samples. **P < .01. NS indicates not significant (P > .05).
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Cell Line Treatment with Epigenetic Modulating Drugs
To evaluate whether TDRD1 promoter demethylation was regulated

by ERG, we treated PNT2 cells with de novo expression of ΔERG and
ETV1 with 1 μM of the DNA methyltransferases inhibitor 5-aza-2′
deoxycytidine (DAC; Sigma-Aldrich) and with 0.5 μM of the histone
deacetylase inhibitor Trichostatin A (TSA; Sigma-Aldrich), both indi-
vidually and in combination, as described by Costa et al. [23]. After 72
and 24 hours of treatment with DAC and TSA, respectively, DNA
and RNA were extracted using the TriplePrep Kit (GE Healthcare),
according to the manufacturer’s recommendations.

Statistical Analysis
To compare gene expression data between the different sample

groups, the Mann-Whitney nonparametric test was applied on RMA-
normalized data using the Statistical Package for Social Sciences, version
15.0 (SPSS, Inc, Chicago, IL). Data from qMSP and mRNA expres-
sion of TDRD1 were compared with the Spearman nonparametric
correlation test. Student’s t test was applied to evaluate differences in the
expression data obtained by quantitative real-time PCR (qRT-PCR).
P < .05 was considered statistically significant.
Results

Differential Expression Analysis in Primary Tumors
Expression array data allowed the identification of both specific and

shared ERG and ETV1 expression-associated genes (Figure 1). Distribu-
tion of samples according to the expression profile of the 22,000 genes
shows that the PCa samples form a unique cluster that deviates from
the expression profile found in the NPT control samples (Figure 2A).
Combined analysis of genes differentially expressed among the dif-
ferent sample groups (NPT, ETS-negative PCa, ERG-positive PCa
and ETV1-positive PCa) led to the identification of 57 genes spe-
cifically associated with PCa with ERG rearrangement (Table W2)
and 15 genes specifically associated with PCa with ETV1 rearrange-
ment (Table W3), with 27 genes being differentially expressed in
both PCa subgroups comparing to PCa without ETS rearrangements
and with NPT (Table W4). PCA using the expression data of the
99 genes thus selected shows four completely independent sample
clusters: NPT controls, ETS-negative PCa, ERG-positive PCa, and
ETV1-positive PCa (Figure 2B). Hierarchical clustering of the sam-
ples according to expression of the 99 genes and of ERG and ETV1
shows clear stratification according to the ETS rearrangement status
(Figure 2C). Interestingly, the two PCa with other ETS rearrangements
(involving ETV4 and ETV5) cluster in close proximity with ETV1-
positive PCa samples.
Selection of Target Genes for Validation in VCaP and
LNCaP Cell Line Models

Using the expression profile of VCaP, LNCaP, PC3, and DU145
cell lines available from Taylor et al. [30] (GSE21034), of our list of
57 ERG candidate target genes, only 7 (ATP8A2, CACNA1D, HLA-
DMB, PDE3B, PLA1A, SH3RF1, and TDRD1) were significantly
upregulated and 1 (TMBIM1) was significantly downregulated inVCaP
cells compared with the other cell lines (Figure W1). Following the
same approach, only 2 (FKBP10 and GLYATL2) of the 15 candidate
ETV1 target genes were significantly upregulated in LNCaP cells com-
paring with the other cell lines, and only 7 (CDC2L6, GRPR, KCNH8,
NCALD, PLA2G7, TMEM45B, and ZNF385B) of the 27 target genes
shared by ERG and ETV1 rearrangements were overexpressed at least
in one of the two ETS-positive cell lines comparing with PC3 and
DU145 (FigureW1). In silico analysis of the ChIP-Seq data set available
from Yu et al. [26] confirmed ERG binding to the promoter of both
the eight specific and the seven shared ERG candidate target genes in
VCaP cells (Table W5).



Figure 5. Validation of shared ERG and ETV1 tumor-associated target genes in cell line models. (A and B) Quantitative expression analysis of
the seven ETS shared candidate target genes in ERG-downregulated VCaP cells and ETV1-downregulated LNCaP cells, respectively, shows
that GRPR, KCNH8, and TMEM45B are significantly downregulated after silencing of either ERG or ETV1. (C) Box plot distribution of the
expression of GRPR (left panel) and KCNH8 (right panel) among the different prostate sample groups shows significant up-regulation of
both genes in ERG- and ETV1-positive PCa comparing with ETS-negative PCa and with NPT samples. (D) qPCR of ERG-immunoprecipitated
chromatin from VCaP cells shows that ERG binds to the GRPR, KCNH8, and TMEM45B promoters. Only the promoter regions that gave
a relative enrichment value above the negative control are shown. (E) De novo expression of two ΔERG isoforms and of ETV1 was not
sufficient to induce expression of these genes in PNT2 cells. *P < .05. **P < .01. NS indicates not significant (P > .05).
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Figure 6. Analysis of the topmost tumor-associated ERG target gene – TDRD1. (A) Box plot distribution of the nine prostate controls
(NPT) and the 48 PCa according to the expression of TDRD1 shows a significant P value comparing ERG-positive PCa with other PCa
and with NPT. (B) qPCR of ERG-immunoprecipitated chromatin from VCaP cells shows that ERG binds to two regions of the TDRD1
promoter. Only the promoter regions that gave a relative enrichment value above the negative control are shown. (C) Quantitative ex-
pression and methylation levels of TDRD1 in prostate controls and tumors show an inverse correlation (rs = −0.417, P = .0015). NPTs
are underlined in black, ETS-negative PCa in gray, ERG-positive PCa in red, and ETV1-positive PCa in purple. (D) Schematic representation
of the CpG island found in the TDRD1 promoter and of the methylation status of each CG dinucleotide in prostate cell lines. The location
of the primers used for bisulfite sequencing is shown by black arrows and the location of the primers and the TaqMan probe used for
qMSP is shown in blue. (E) Quantitative expression and methylation levels of TDRD1 in PNT2 cells show that de novo expression of two
ΔERG isoforms and of ETV1 does not increase the demethylation-induced expression of TDRD1 in the presence of DAC.
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ERG-Dependent Deregulation of Tumor-Associated ERG
Target Genes in VCaP Cells

Quantitative expression analysis of the eight ERG candidate tar-
get genes after siRNA-mediated ERG silencing in VCaP cells shows that
expression of all genes but SH3RF1 is significantly affected by ERG
knockdown (Figure 3, A and B). De novo overexpression of the most
common ERG truncated isoforms (ΔERG and ΔERGΔ8) in the benign
prostate cell line PNT2, however, did not show the reverse effect (Fig-
ure 3, C and D). Expression levels of the seven deregulated ERG candi-
date target genes were not affected by ETV1 silencing in LNCaP cells
(data not shown), thus confirming that the observed ERG-dependent
regulation is specific of tumor cells harboring ERG overexpression.



Neoplasia Vol. 14, No. 7, 2012 ETS Target Genes in Prostate Cancer Paulo et al. 609
ETV1 Overexpression Drives Up-regulation of the
Tumor-Associated Target FKBP10
A significant down-regulation of FKBP10 and GLYATL2 was

observed in the LNCaP-shETV1 clones (Figure 4, A and B). Inter-
estingly, de novo expression of full-length ETV1 in PNT2 cells showed
significant up-regulation of FKBP10 in the PNT2-ETV1-B population
(Figure 4C and 4D). These observations were not found in VCaP-
siERG cells neither in any of the PNT2-ERG cells (data not shown),
thus suggesting that ETV1 overexpression specifically drives FKBP10
up-regulation in prostate cells.
Shared Tumor-Associated ETS Target Genes Are Regulated
by Both ERG and ETV1 in Prostate Cancer Cell Lines
Quantification of the expression levels of the seven candidate target

genes shared by ERG and ETV1 rearrangements showed that GRPR,
KCNH8, and TMEM45B are significantly downregulated after silenc-
ing of both ETS transcription factors (Figure 5, A and B). Interest-
ingly, GRPR and KCNH8 were the topmost overexpressed genes of
our list of ERG and ETV1 shared candidate target genes (Figure 5C).
qPCR on the ERG-immunoprecipitated chromatin from VCaP cells
showed direct binding of ERG to the promoters of GRPR (region
−583), KCNH8 (region −1472), and TMEM45B (region −260)
(Figure 5D).
TDRD1 Expression Is Regulated by ERG in Prostate
Tumors Harboring ERG Rearrangement
Considering the highly significant association of our topmost over-

expressed gene, TDRD1, with PCa harboring ERG rearrangements
(Figure 6A), we first questioned whether TDRD1 was a direct target
of ERG. qPCR on the ERG-immunoprecipitated chromatin from
VCaP cells showed that ERG binds to the TDRD1 promoter in
two promoter regions (Figure 6B).
Because TDRD1 is described as a cancer germ line gene regulated

by methylation [31], we questioned whether methylation levels of
TDRD1 promoter differ among NPT control samples and the dif-
ferent subgroups of PCa of our series. A CpG island with 28 CpG
dinucleotides was found starting at −66 bp of the transcription start
site (Ensembl gene ID ENSG00000095627) and covering 330 bp
(Figure 6, C and D). As expected, a significant inverse correlation
was obtained between TDRD1 mRNA expression (exon array data,
linear values) and TDRD1 methylation levels (rs = −0.417, P = .0015).
A significant decrease in TDRD1 methylation was found between
tumors harboring ERG rearrangements and both NPT (P = .004) and
tumors without ETS rearrangements (P = .0001), whereas methyla-
tion levels of NPT and ETS-negative PCa were not statistically different
(P = .124).
Bisulfite sequencing of the TDRD1 promoter in VCaP, LNCaP,

PC3, DU145, 22Rv1, and PNT2 cells showed that the TDRD1 pro-
moter is completely methylated in all cell lines except in VCaP cells
(Figure 6D), the only cell line that shows expression of TDRD1 by
qRT-PCR (data not shown). Interestingly, the CpG island com-
pletely overlaps with the promoter region at −8768 bp shown to
be bound by ERG using ChIP. To evaluate whether ERG over-
expression modulates the levels of methylation-controlled TDRD1
expression in prostate cancer cells, we treated PNT2 cell populations
(PNT2-Neo, PNT2-ERG, and PNT2-ETV1) with epigenetic modu-
lating drugs. Treatment with DAC induced TDRD1 expression in
all PNT2 cells, and this reexpression was associated with decreased
methylation levels of the TDRD1 promoter (Figure 6E). These effects
were not observed when cells were treated with TSA alone, and neither
were they increased with the combination of TSA and DAC (data
not shown).
Discussion
We have analyzed a clinical series of PCa enriched for ERG and
ETV1 rearrangements with a genome-scale and exon-level expression
microarray platform that ensures robust gene-level expression measures.
Of 57 ERG-associated genes in primary PCa, 8 were also deregulated
in VCaP cells with the TMPRSS2-ERG fusion. In fact, seven of these
genes were shown to be significantly affected by ERG knockdown. Six
of these genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B,
and TDRD1) have been previously described as coexpressed with
ERG in prostate cancer, but only PLA1A and CACNA1D are validated
as direct ERG target genes [12,18,32–35]. The top-ranked tumor-
associated ERG target gene in our study was TDRD1, and we showed
not only that TDRD1 expression is regulated by methylation of a CpG
island located at −66 bp of the transcription start site [31] but also that
ERG binds to the unmethylated CpG island of the TDRD1 promoter
in VCaP cells. Although ERG silencing in VCaP cells resulted in down-
regulation of TDRD1, our data on de novo overexpression of ERG in
PNT2 cells suggest that another regulatory mechanism acting upstream
of ERG actively leads to demethylation of TDRD1 promoter or that
other cofactors may be required for ERG-mediated TDRD1 demeth-
ylation. TDRD1 encodes the tudor domain-containing protein 1 de-
scribed as involved in male germ cell differentiation and in the small
RNAs pathway [36–38]. Although the biologic consequence of over-
expressed or reexpressed TDRD1 is not known, loss of TDRD1 in germ
line cells is associated with changes in small RNA profile and with
loss of methylation of L1 transposons [39] and may thus establish a
link between ERG overexpression and the epigenetic reprogramming
described by others [26,40,41].

Of the 15 genes highly associated with tumors harboring ETV1
rearrangements, only 2 genes were shown to have the expected over-
expression in the LNCaP cell line harboring an ETV1 rearrangement.
Both FKBP10 and GLYATL2 were significantly downregulated after
ETV1 knockdown, but only FKBP10 seemed to be upregulated in
PNT2 cells with de novo expression of ETV1. FKBP10 (FK506-binding
protein 10) encodes a member of the highly conserved family of intra-
cellular receptors called immunophilins, which acts as a molecular
chaperone in the endoplasmic reticulum [42]. We found no reports
on FKBP10 involvement in prostate carcinogenesis, but other immuno-
philins, namely FKBP51 and FKBP52, have been described to be
androgen regulated and their interaction with androgen receptor (AR)
seems to be necessary for AR-mediated proliferation of LNCaP cells
[43]. In the same cells, the presence of its ligand, FK506, was suffi-
cient to block several stages of the AR signaling [44]. Taken together,
these observations suggest that inhibition of FKBP10 by FK506 may be
a good therapy approach for the treatment of PCa harboring ETV1
rearrangements. Interestingly, when the expression profiles of the
two PCa with ETV4 and ETV5 rearrangements were included in the
hierarchical clustering, they clustered among the ETV1-positive PCa
samples. This suggests that theETV4 and ETV5 tumor-associated target
genes might be, at least in part, shared with ETV1, which, altogether,
represent the PEA3 subfamily of ETS transcription factors [45].

Although the identification of specific target genes of ERG and
ETV1 rearrangements in PCa is a major finding in this work, the
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existence of shared target genes was expected because both genes belong
to the same family of transcription factors [46]. In fact, we report a list
of 27 target genes shared by ERG and ETV1 rearrangements. KCNH8
and NCALD have been previously associated with tumors harbor-
ing ERG rearrangements [32–34], but no biologic validation of their
ERG dependence had been shown. Our results, using the VCaP and
LNCaP knockdown cell line models, clearly validate KCNH8, GRPR,
and TMEM45B as downstream targets of both ERG and ETV1, as
also indicated by our demonstration of direct binding of ERG to the
promoter of these genes using ERG-immunoprecipitated chromatin
from VCaP cells. TMEM45B encodes a putative membrane protein
with unknown function, so its role in prostate carcinogenesis might
be worth exploring. Nevertheless, GRPR, which encodes the gastrin-
releasing peptide receptor, has been described as overexpressed in
several cancer types, including PCa [47–51]. Overexpression of GRPR
was found in androgen-dependent prostate cancer xenografts [52], and
it seems to be dependent on AR activation [53]. Recently, Beer et al.
[50] described that combined overexpression of GRPR and AR was
associated with a favorable prognosis in patients with PCa. These
observations, together with our findings showing GRPR overexpres-
sion in a high proportion of PCa harboring either ERG or ETV1 re-
arrangements, warrant further investigation on the cooperation of ETS
transcription factors and AR signaling in regulating the expression of
GRPR in PCa.

Only a fraction of the ERG and ETV1 tumor-associated genes
showed the expected expression pattern in VCaP and LNCaP cell
lines, the best available in vitro models of ERG- and ETV1-positive
PCa. This by no means indicates that the remaining potential ETS
target genes found in primary tumors are not relevant for in vivo pros-
tate carcinogenesis; it may be that these cell lines have kept only the
part of the in vivo tumor-derived gene expression signature that was
advantageous for in vitro survival or the in vitro cell line–associated
gene expression signature is being modulated by the environmental
factors to which cells are exposed. In fact, our PCa series is derived
from organ confined or locally advanced tumors [8] removed by radical
prostatectomy before any other therapy, meaning that they were, most
probably, androgen responsive. Nevertheless, although VCaP and
LNCaP cells are androgen responsive [54,55], the gene expression sig-
nature available from Taylor et al. [30] and the ERG and ETV1 silenc-
ing experiments that were performed were obtained without androgen
stimulation. This suggests that the expression of some tumor-associated
ERG and ETV1 target genes might be dependent on androgen receptor
activation, whereas others might be androgen independent. The same
explanation may be operative with the overall absence of effect on the
tested target genes that was observed with de novo expression of either
ΔERG isoforms or ETV1 in the benign PNT2 cells, which are also
androgen sensitive [56]. Silencing and de novo expression of ERG and
ETV1 in these cell line models under androgen stimulation, together
with cell line–based assays focusing in specific ERG and ETV1 targets,
would be useful to clarify the cooperativity/dependence of these ETS
transcription factors and/or AR signaling.

In conclusion, differential expression profile of tumors harboring
either ERG or ETV1 rearrangements allowed the identification of both
specific and shared ETS downstream targets. From detailed studies in
prostate cancer models, we have validated ETS-dependent expression
of seven ERG-specific, two ETV1-specific, and three ERG and ETV1
shared target genes. TDRD1, FKBP10, and GRPR are promising
therapeutic targets and can serve as diagnostic markers for molecular
subtypes of PCa harboring specific fusion gene rearrangements.
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Table W1. Assay ID or Sequence of the Primers and Probes Used in This Study.
Assay
 Assay/Primer Name
 Assay ID/Primer Sequence 5′-3′
CDS-PCR
 ΔERG-F
 *CTAGGCGCCGGAATTCTAGGCGCGAGCTAAGCAGGAG

CDS-PCR
 ΔERG-R
 *CGGTAGAATTAGATCTTCCGATAGAGTTTGTGGCGATG

CDS-PCR
 ETV1-F
 *CTAGGCGCCGGAATTCAGCTGAGATTTGCGAAGAGC

CDS-PCR
 ETV1-R
 *CGGTAGAATTAGATCTGCCCTGCTTGACTGTCACTT

qRT-PCR
 ATP8A2
 Hs00185259_m1

qRT-PCR
 CACNA1D
 Hs00167753_m1

qRT-PCR
 CDK19
 Hs00292369_m1

qRT-PCR
 ERG
 Hs01554635_m1

qRT-PCR
 ETV1
 Hs00951941_m1

qRT-PCR
 FKBP10
 Hs00222557_m1

qRT-PCR
 GHR
 Hs01075601_m1

qRT-PCR
 GLYATL2
 Hs00332757_m1

qRT-PCR
 GRPR
 Hs01055872_m1

qRT-PCR
 HLA-DMB
 Hs00157943_m1

qRT-PCR
 KCNH8
 Hs00292491_m1

qRT-PCR
 NCALD
 Hs00230737_m1

qRT-PCR
 PDE3B
 Hs00265322_m1

qRT-PCR
 PLA1A
 Hs01056915_m1

qRT-PCR
 PLA2G7
 Hs00173726_m1

qRT-PCR
 SH3RF1
 Hs00325806_m1

qRT-PCR
 TDRD1
 Hs00229805_m1

qRT-PCR
 TMBIM1
 Hs00223351_m1

qRT-PCR
 TMEM45B
 Hs00431155_m1

qRT-PCR
 ZNF385B
 Hs00332216_m1

qRT-PCR
 GUSB
 4333767F

qMSP
 TDRD1-F
 ATATTGAGTTGTACGTGGACGC

qMSP
 TDRD1-R
 GAATCCGAACCTATCTCTACGA

qMSP
 TDRD1-P
 CCTCGCCTCCAATCCCCAATACG

qMSP
 ACTB-F
 TGGTGATGGAGGAGGTTTAGTAAGT

qMSP
 ACTB-R
 AACCAATAAAACCTACTCCTCCCTTAA

qMSP
 ACTB-P
 ACCACCACCCAACACACAATAACAAACACA

BSP
 TDRD1-F
 TTGTAAAGGAATTTTTTGAGTTTG

BSP
 TDRD1-R
 CCTTCATACAAACCCTCTCC

ChIP-qPCR
 pTDRD1-1207F
 TCAGCCTGTCCCTTCAATTTAG

ChIP-qPCR
 pTDRD1-1207R
 CCCTCGAAAGTAGGGAACTCTT

ChIP-qPCR
 pTDRD1-3196F
 TGCTACAGTTTCTGGAGGTTCT

ChIP-qPCR
 pTDRD1-3196R
 TGCAATAGCCACAGGTGAAG

ChIP-qPCR
 pTDRD1-7686F
 GGTTCCACAGGAATGGAAGA

ChIP-qPCR
 pTDRD1-7686R
 TGTAAAATGCAGAGGGCAGTAG

ChIP-qPCR
 pTDRD1-8768F
 CCAAGTGACCTTCGAGGAGA

ChIP-qPCR
 pTDRD1-8768R
 GTCCACGTGCAACTCAATGT

ChIP-qPCR
 pKCNH8-797F
 GGATGGGCCTCACAACTAAC

ChIP-qPCR
 pKCNH8-797R
 TTGGAGAAAGGGAGGAGACA

ChIP-qPCR
 pKCNH8-1472F
 CCGAGTTCCTGGAGATCAGA

ChIP-qPCR
 pKCNH8-1472R
 ACCCAGAGCCCGAACTTTAT

ChIP-qPCR
 pKCNH8-3506F
 TGTGCTTGCTTTCAATCTGG

ChIP-qPCR
 pKCNH8-3506R
 CTTGGGGCTTCAGTTATTGG

ChIP-qPCR
 pGRPR-583F
 TGGGCAGTGATTGAAGTGTC

ChIP-qPCR
 pGRPR-583R
 GCACTGAGAAATCCTCAAATCC

ChIP-qPCR
 pGRPR-1386F
 TGGCTAAAGGTCTAAGCCTG

ChIP-qPCR
 pGRPR-1386R
 CGGCATTTTGATGCAGCTAT

ChIP-qPCR
 pGRPR-4858F
 TCCTTCCCTCACACCCTGTA

ChIP-qPCR
 pGRPR-4858R
 ATGCACCCACAGGTAACACC

ChIP-qPCR
 pTMEM45B-260F
 CCCCACCCTCATCCTTTTAT

ChIP-qPCR
 pTMEM45B-260R
 CCACGTTAAGAAGGATCAACAC

ChIP-qPCR
 pTMEM45B-2847F
 ACATGGATGCCACCAAGATT

ChIP-qPCR
 pTMEM45B-2847R
 GGGTCTCAGAGATCACTGCCTA

ChIP-qPCR
 pTMEM45B-5687F
 GGTGATGCCTGACAATGATG

ChIP-qPCR
 pTMEM45B-5687R
 AGCCACTTTCAACCCTTTCA
F indicates forward; P, probe (5′ FAM and 3′TAMRA); R, reverse.
*Underlined nucleotides are the In-fusion link for cloning, not gene specific.



Table W2. Tumor-Associated ERG-Specific Target Genes.
Gene Symbol
 Cytoband
 mRNA Accession
 Description
ACADVL
 17p13-p11
 NM_000018
 Acyl-coenzyme A dehydrogenase, very long chain

ACER3
 11q13.5
 NM_018367
 Alkaline ceramidase 3

ALDH2
 12q24.2
 NM_000690
 Aldehyde dehydrogenase 2 family (mitochondrial)

ALOX15
 17p13.3
 NM_001140
 Arachidonate 15-lipoxygenase

AMPD3
 11p15
 NM_001025390
 Adenosine monophosphate deaminase (isoform E)

ANG
 14q11.1-q11.2
 NM_001145
 Angiogenin, ribonuclease, RNAse A family, 5

ATP8A2
 13q12
 NM_016529
 ATPase, aminophospholipid transporter-like, class I, type 8A, member 2

AUTS2
 7q11.22
 NM_015570
 Autism susceptibility candidate 2

AZGP1
 7q22.1
 NM_001185
 α-2-glycoprotein 1, zinc-binding

BCR
 22q11|22q11.23
 NM_004327
 Breakpoint cluster region

C4orf18
 4q32.1
 NM_001128424
 Chromosome 4 open reading frame 18

CACNA1D
 3p14.3
 NM_000720
 Calcium channel, voltage-dependent, L-type, α 1D subunit

CD44
 11p13
 NM_000610
 CD44 molecule (Indian blood group)

CDH7
 18q22-q23
 NM_033646
 Cadherin 7, type 2

CLUL1
 18p11.32
 NM_014410
 Clusterin-like 1 (retinal)

CRYM
 16p13.11-p12.3
 NM_001888
 Crystallin, mu

CST3
 20p11.21
 NM_000099
 Cystatin C

EFHD2
 1p36.21
 NM_024329
 EF-hand domain family, member D2
FRK
 6q21-q22.3
 NM_002031
 Fyn-related kinase

GDA
 9q21.13
 NM_004293
 Guanine deaminase

GPRC5D
 12p13.3
 NM_018654
 G protein-coupled receptor, family C, group 5, member D

HDAC1
 1p34
 NM_004964
 Histone deacetylase 1

HLA-DMB
 6p21.3
 NM_002118
 Major histocompatibility complex, class II, DM β

HPS1
 10q23.1-q23.3
 NM_000195
 Hermansky-Pudlak syndrome 1

KAZALD1
 10q24.31
 NM_030929
 Kazal-type serine peptidase inhibitor domain 1

KCNN2
 5q22.3
 NM_021614
 Potassium intermediate/small conductance calcium-activated channel,

subfamily N, member 2

KCNS3
 2p24
 NM_002252
 Potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3

KIF16B
 20p11.23
 NM_024704
 Kinesin family member 16B

LIMK2
 22q12.2
 NM_016733
 LIM domain kinase 2

MAPK6
 15q21
 NM_002748
 Mitogen-activated protein kinase 6

MCOLN2
 1p22
 NM_153259
 Mucolipin 2

MCOLN3
 1p22.3
 NM_018298
 Mucolipin 3

MPPED2
 11p13
 NM_001584
 Metallophosphoesterase domain-containing 2

MUM1L1
 Xq22.3
 NM_152423
 Melanoma-associated antigen (mutated) 1-like 1

MYO6
 6q13
 NM_004999
 Myosin VI

OGDHL
 10q11.23
 NM_018245
 Oxoglutarate dehydrogenase-like

PCDHB9
 5q31
 NM_019119
 Protocadherin β 9

PDE3B
 11p15.1
 NM_000922
 Phosphodiesterase 3B, cGMP-inhibited

PDP1
 8q22.1
 NM_001161778
 Pyruvate dehyrogenase phosphatase catalytic subunit 1

PHLDB2
 3q13.2
 NM_001134438
 Pleckstrin homology-like domain, family B, member 2

PLA1A
 3q13.13-q13.2
 NM_015900
 Phospholipase A1 member A

PNKD
 2q35
 NM_015488
 Paroxysmal nonkinesigenic dyskinesia

PRPS2
 Xp22.3-p22.2
 NM_001039091
 Phosphoribosyl pyrophosphate synthetase 2

PRR15
 7p14.3
 NM_175887
 Proline-rich 15

RAB27A
 15q15-q21.1
 NM_004580
 RAB27A, member RAS oncogene family

RAB30
 11q12-q14
 NM_014488
 RAB30, member RAS oncogene family

RICH2
 17p12
 NM_014859
 Rho-type GTPase-activating protein RICH2

SEMA4G
 10q24.31
 NM_017893
 Sema domain, immunoglobulin domain (Ig), transmembrane domain (TM)

and short cytoplasmic domain, (semaphorin) 4G

SH3RF1
 4q32.3-q33
 NM_020870
 SH3 domain-containing ring finger 1

SLCO1B3
 12p12
 NM_019844
 Solute carrier organic anion transporter family, member 1B3

SMOC2
 6q27
 NM_022138
 SPARC-related modular calcium binding 2

TDRD1
 10q25.3
 NM_198795
 Tudor domain-containing 1

TMBIM1
 2p24.3-p24.1
 NM_022152
 Transmembrane BAX inhibitor motif containing 1

TMEM134
 11q13.2
 NM_025124
 Transmembrane protein 134

TMEM26
 10q21.2
 NM_178505
 Transmembrane protein 26

VLDLR
 9p24
 NM_003383
 Very low density lipoprotein receptor

ZNF217
 20q13.2
 NM_006526
 Zinc finger protein 217



Table W3. Tumor-Associated ETV1-Specific Target Genes.
Gene Symbol
 Cytoband
 mRNA Accession
 Description
ACACA
 17q21
 NM_198839
 Acetyl-coenzyme A carboxylase α

BOK
 2q37.3
 NM_032515
 BCL2-related ovarian killer

COL9A2
 1p33-p32
 NM_001852
 Collagen, type IX, α2

FKBP10
 17q21.2
 NM_021939
 FK506 binding protein 10, 65 kDa

GLYATL2
 11q12.1
 NM_145016
 Glycine-N -acyltransferase-like 2

MTNR1A
 4q35.1
 NM_005958
 Melatonin receptor 1A

PROS1
 3q11.2
 NM_000313
 Protein S (α)

SIPA1
 11q13
 NM_153253
 Signal-induced proliferation–associated 1

SLC16A1
 1p12
 NM_003051
 Solute carrier family 16, member 1 (monocarboxylic acid transporter 1)

SLC45A2
 5p13.2
 NM_016180
 Solute carrier family 45, member 2

SLC4A10
 2q23-q24
 NM_022058
 Solute carrier family 4, sodium bicarbonate transporter, member 10

SRGAP1
 12q14.2
 NM_020762
 SLIT-ROBO Rho GTPase activating protein 1

SYT6
 1p13.2
 NM_205848
 Synaptotagmin VI

TWIST1
 7p21.2
 NM_000474
 Twist homolog 1 (Drosophila)

VSTM2L
 20q11.23
 NM_080607
 V-set and transmembrane domain-containing 2 like
Table W4. Tumor-Associated ETS Shared Target Genes.
Gene Symbol
 Cytoband
 mRNA Accession
 Description
APLN
 Xq25-q26.3
 NM_017413
 Apelin

CDC2L6
 6q21
 NM_015076
 Cell division cycle 2-like 6 (CDK8-like)

CHN2
 7p15.3
 NM_004067
 Chimerin (chimaerin) 2

CLYBL
 13q32
 NM_206808
 Citrate lyase β like

CSGALNACT1
 8p21.3
 NM_018371
 Chondroitin sulfate N -acetylgalactosaminyltransferase 1

DLX1
 2q32
 NM_178120
 Distal-less homeobox 1

FAM81A
 15q22.2
 NM_152450
 Family with sequence similarity 81, member A

FANK1
 10q26.2
 NM_145235
 Fibronectin type III and ankyrin repeat domains 1

FOXD1
 5q12-q13
 NM_004472
 Forkhead box D1

GHR
 5p13-p12
 NM_000163
 Growth hormone receptor (GHR), mRNA

GRPR
 Xp22.2-p22.13
 NM_005314
 Gastrin-releasing peptide receptor

KCNC2
 12q14.1
 NM_139136
 Potassium voltage-gated channel, Shaw-related subfamily, member 2

KCNH8
 3p24.3
 NM_144633
 Potassium voltage-gated channel, subfamily H (eag-related), member 8

MYO1E
 15q21-q22
 NM_004998
 Myosin IE

NCALD
 8q22.2
 NM_001040624
 Neurocalcin delta

NKAIN1
 1p35.2
 NM_024522
 Na+/K+ transporting ATPase interacting 1

NOSTRIN
 2q24.3-q31.1
 NM_001039724
 Nitric oxide synthase trafficker

PLA2G7
 6p21.2-p12
 NM_005084
 Phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)

PPFIBP2
 11p15.4
 NM_003621
 PTPRF interacting protein, binding protein 2 (liprin β2)

REXO2
 11q23.1-q23.2
 NM_015523
 REX2, RNA exonuclease 2 homolog (Saccharomyces cerevisiae)

SDK1
 7p22.2
 NM_152744
 Sidekick homolog 1, cell adhesion molecule (chicken)

SNX24
 5q23.2
 NM_014035
 Sorting nexin 24

TMEM178
 2p22.1
 NM_152390
 Transmembrane protein 178

TMEM45B
 11q24.3
 NM_138788
 Transmembrane protein 45B

ZNF385B
 2q31.2-q31.3
 NM_152520
 Zinc finger protein 385B

ZNF652
 17q21.32-q21.33
 NM_001145365
 Zinc finger protein 652

ZNF765
 19q13.42
 NM_001040185
 Zinc finger protein 765



Figure W1. Basal expression levels of the selected ETS target genes in VCaP, LNCaP, PC3, and DU145 cell lines, obtained from the
RMA-normalized signal intensity data publicly available from Taylor et al. [30] (GSE21034). (A) Basal expression levels of the eight tumor-
associated ERG-specific candidate target genes. (B) Basal expression levels of the two tumor-associated ETV1-specific candidate target
genes. (C) Basal expression levels of the seven tumor-associated ERG and ETV1 shared candidate target genes.



Table W5. ERG Binding Sites to the Selected Target Genes [26].
Target
 Coordinates (Peak)
1

Peak Height
 Peak Width
ATP8A2
 chr13:24,844,894-24,845,182
 13.6548
 289

chr13:24,960,106-24,960,310
 10.6179
 205

chr13:24,966,222-24,966,790
 29.0745
 569

chr13:24,967,021-24,967,552
 51.4902
 532

chr13:24,981,947-24,982,277
 14.3591
 331

chr13:24,968,575-24,968,953
 12.2229
 379

chr13:25,047,778-25,047,926
 10.0191
 149

chr13:25,159,694-25,160,317
 18.6479
 624

chr13:25,435,965-25,436,267
 12.0351
 303

chr13:25,443,584-25,443,980
 16.0235
 397

chr13:25,450,401-25,450,626
 12.8697
 226

chr13:25,492,200-25,492,681
 22.8975
 482
CACNA1D
 chr3:53,494,975-53,495,558
 93.0446
 583

chr3:53,543,934-53,544,673
 25.4475
 740

chr3:53,503,125-53,503,899
 15.0684
 775

chr3:53,515,374-53,515,828
 24.2029
 455

chr3:53,623,475-53,623,677
 11.7889
 203
CDC2L6
 chr6:111,243,178-111,243,861
 18.2715
 684

chr6:111,051,167-111,051,366
 12.5119
 200

chr6:111,241,751-111,241,952
 14.04
 202

chr6:111,117,200-111,117,567
 19.945
 368
GRPR
 chrX:16,051,325-16,051,526
 10.369
 202

HLA-DMB
 chr6:33,017,157-33,017,600
 21.7845
 444

KCNH8
 chr3:19,163,071-19,164,838
 62.0921
 1768
chr3:19,233,172-19,233,503
 21.5962
 332

chr3:19,272,826-19,273,052
 11.42
 227
NCALD
 chr8:103,206,257-103,206,743
 37.8902
 487

chr8:103,204,576-103,205,659
 11.8456
 1084

chr8:103,190,344-103,190,556
 11.8066
 213

chr8:103,189,323-103,190,009
 23.2166
 687

chr8:103,186,224-103,186,529
 12.561
 306

chr8:103,112,338-103,112,871
 76.5726
 534

chr8:103,049,066-103,049,534
 29.0425
 469

chr8:102,838,398-102,838,910
 26.5179
 513

chr8:102,822,392-102,822,919
 13.4375
 528

chr8:102,805,976-102,806,202
 11.6241
 227
PDE3B
 chr11:14,621,513-14,622,267
 24.9654
 755

chr11:14,622,401-14,623,083
 12.3038
 683
PLA1A
 chr3:120,802,377-120,802,558
 11.5989
 182

PLA2G7
 chr6:46,811,125-46,811,459
 10.8366
 335

SH3RF1
 chr4:170,427,905-170,429,255
 30.7452
 1351
chr4:170,377,325-170,377,452
 10.7175
 128

chr4:170,272,975-170,273,177
 10.1184
 203

chr4:170,261,789-170,262,253
 26.2919
 465

chr4:170,250,579-170,250,860
 13.09
 282
TDRD1
 chr10:115,928,777-115,929,226
 42.7532
 450

chr10:115,929,474-115,929,753
 17.2206
 280

chr10:115,931,749-115,931,952
 12.9605
 204
TMBIM1
 chr2:218,845,599-218,846,084
 15.9441
 486

chr2:218,842,616-218,843,563
 68.8155
 948
TMEM45B
 chr11:129,190,576-129,191,309
 26.0991
 734

chr11:129,192,367-129,192,815
 16.6449
 449

chr11:129,227,301-129,227,768
 16.9834
 468

chr11:129,228,731-129,229,530
 28.771
 800
ZNF385B
 chr2:180,434,051-180,434,374
 10.9614
 324

chr2:180,251,300-180,251,534
 12.105
 235

chr2:180,250,103-180,250,510
 19.5634
 408


